SHOULDER MILLING INSERTS,TURNING INSERTS,CARBIDE INSERTS

SHOULDER MILLING INSERTS,TURNING INSERTS,CARBIDE INSERTS,We offer round, square, radius, and diamond shaped carbide inserts and cutters.

A drill or end mill within a machining center spindle sees two types of movement. The spindle rotates the tool and the machine axes feed it. We have no expectation for the tool except that it will be driven through the material by these two motions alone.

However, what if the tool itself was also moving in a way that complemented these motions, increasing the effectiveness of the cut?

Manufacturing R&D firm EWI of Columbus, Ohio, has been exploring an answer to that question. A system developed by this group applies a controlled ultrasonic vibration to a standard cutting tool, causing the tool to expand and contract through a microscopic amplitude. Experiments have shown that the resulting movement of the cutting edge enables the tool to cut more effectively, passing through the material with less force. The improvement is so great that, for example, a combination of CNMG Insert machining center and drill that was formerly unable to complete a hole in a 1.5-inch-thick titanium plate can now get several holes per tool whenever the ultrasonic oscillation is powered on. The system delivering this oscillation will be available for sale in 2015.

“Acoustech” is the brand name for this system. Though the system realizes ultrasonic machining, EWI avoids this term, which has come to be associated with a different and more established technology. Usually, “ultrasonic machining” refers to specialized ultrasonic machine tools that oscillate an abrasive tool. EWI’s offering is not that. The Acoustech system makes use of controlled ultrasonic vibration not on a special machine tool, but on any existing machining center using any standard drill or end mill. 

The vibration comes Carbide Inserts from a device that is essentially a toolholder with an ultrasonic actuator built in. The same device also incorporates a compensating vibration-cancellation mechanism that prevents the ultrasonic actuation from affecting the machine tool itself.

The vibration is “ultrasonic” because its frequency is above what the human ear can hear. Audible noise occurs at 15 to 18 kilohertz. Acoustech vibrates the tool at 20 to 60 kilohertz. The specific effect of this vibration is expansion and contraction of the tool through a controlled amplitude. Trials in aluminum performed by the National Center for Defense Manufacturing and Machining suggest that the ideal size of the amplitude in this material is 5 microns—large enough to have a favorable effect on the mechanics of the cut, but small enough so that the tool’s cutting edge never leaves the chip.

Used with a drill, the Acoustech system causes the tool to lengthen and shorten by this small extent. The effect is much like a 20- to 60-kiloHertz peck cycle. But EWI technology leader Matt Short, who has been involved with Acoustech throughout its years of development, says there is more going on than this. The helix of the lengthening and shortening drill essentially “unwinds” and “rewinds” by a comparable extent. The edge of the helix thus moves forward and back within the cut to a microscopic degree. As a result, the system produces the equivalent of a torsional peck cycle as well, with the cutting edge practically sawing through the material as it goes. A similar effect happens with end mills. Because the tool is repeatedly relaxing its engagement with the cut, friction is less, meaning heat and cutting force are also less and tool life is generally longer.

The difference has been measured in test cuts, and some of the measured performance improvements have been dramatic. In one trial involving drilling holes in 316 stainless steel, the cutting force measured using Acoustech remained less than that of the standard, unassisted cut even after the feed rate for the ultrasonic cut was increased. With the Acoustech system on, feed rate could be doubled, and the measured cutting force was still 13 percent less than what was measured for the slower, standard drilling pass. Ultrasonics also improved the measured surface finish of the hole by 12 percent, EWI says. 

In a similar test, the Acoustech system allowed the feed rate to be increased from 7.3 to 14.6 ipm in stainless, but with a tool-life increase because of the cutting force reduction.

In a milling trial involving an end mill held at a high stick-out length, the tool deflected during standard side milling to produce an unacceptable taper in the part. When the process was then run at the same conditions using the Acoustech system, the measured cutting force decreased by 62 percent. This lower force was slight enough that the tool did not measurably deflect, enabling it to mill the surface square.

This cutting force reduction provides for a variety of potential benefits, Mr. Short notes. In addition to the potential improvement in feed rate, tool life and accuracy, less cutting force also means reduced power consumption.


The Carbide Inserts Blog: http://besttools.blog.jp/

United States cutting tool consumption totaled $188.7 million in June 2015, according to the U.S. Cutting Tool Institute (USCTI) and AMT – The Association For Manufacturing Technology. This total, as reported by companies participating in the Cutting Tool Market Report (CTMR) collaboration, was up 9 percent from May 2015’s total and down 1 percent from June 2014.

These totals represent the majority of the U.S. market for cutting tools.

Tom Haag, USCTI president, interprets the numbers: “The momentum has definitely slowed in the second quarter of the year and has brought us to a relatively flat position compared to 2014 as we hit the halfway mark. VCMT Insert Many economic indicators look solid, as the auto industry and aerospace production have a positive outlook, so we remain cautiously optimistic that we will see tepid growth through the remainder of the year.” He deep hole drilling inserts adds that, while the industry was not forecasted to be this weak, some of the current conditions can be attributed to the recent slump in the Asian oil and gas market as well as turbulence in European economies.


The Carbide Inserts Blog: https://spikejean.exblog.jp/

CAM-Tool software, available from CGS North America, features an improved simultaneous five-axis conversion function. The update decreases unnecessary axis movement to provide smoother, more accurate tool paths. The automatic function makes tool paths easier to create, according to the company.

Two tool paths support WCMT Insert barrel and lens cutters. 3D Offset Cutting is a finishing mode that outputs offset cutter paths along surfaces with a constant step, while Curve Control Along Surface is designed for control in machining contours and reduced air cutting.  Combined with simultaneous five-axis machining, these strategies can reducecycle times and improvesurface finish, the company says.

The system also helps users prepare for five-axis machining by enabling them to display the tool shape against the part model and account for changes in tilt and rotation angle.

Component Point Rearrangement produces smoother machine tool movement for obtaining better surface finishes. The feature arranges component points at equal intervals to optimize tool paths. Rearrangement type can gun drilling inserts be either Aligned or Alternate.

CAM-Tool’s drilling functions have also been improved. G01 Cross Hole Drilling controls the feed rate when crossing holes, recognizing the crossing section and adjusting accordingly. This adjustment is performed automatically by using the stock model to understand where to apply the strategy. By reducing the feed rate only at the crossing section, the feature avoids chipping that can occur when breaking through cross holes, thereby extending tool life. 


The Carbide Inserts Blog: http://carbideinserts.blog.jp/

↑このページのトップヘ